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Abstract—The ever-growing security issues in various mobile
applications and smart devices create an urgent demand for
a reliable and convenient user verification method. Traditional
verification methods request users to provide their secrets (e.g.,
entering passwords and collecting fingerprints). We envision
that the essential trend of user verification is to free users
from active participation in the verification process. Toward this
end, we propose a continuous user verification system, which
re-uses the widely deployed WiFi infrastructure to capture the
unique physiological characteristics rooted in user’s respiratory
motions. Different from the existing continuous verification
approaches, posing dependency on restricted scenarios/user
behaviors (e.g., keystrokes and gaits), our system can be easily
integrated into any WiFi infrastructure to provide non-intrusive
continuous verification. Specifically, we extract the respiration-
related signals from the channel state information (CSI) of WiFi.
We then derive the user-specific respiratory features based on
the waveform morphology analysis and fuzzy wavelet transfor-
mation of the respiration signals. Additionally, a deep learning
based user verification scheme is developed to identify legitimate
users accurately and detect the existence of spoofing attacks.
Extensive experiments involving 20 participants demonstrate
that the proposed system can robustly verify/identify users and
detect spoofers under various types of attacks.

I. INTRODUCTION

Respiration monitoring has drawn considerable attention
as it provides the essential information about the physical
health of a person, which could enable a variety of emerging
applications. For instance, respiratory patterns could be used
for early detection of diseases in many areas including
sleep, pulmonology, and cardiology. In addition, existing
studies [4], [27] have shown that people’s respiratory motions
generate unique biometric information in terms of breathing
rhythms, breathing sound, and corresponding thoracoabdomi-
nal motions. Thus, it is possible to exploit respiratory motions
to distinguish individuals without requiring any extra human
effort since people breathe all the time without conscious
volition [7]. In this work, we target on building a non-
intrusive continuous user verification system using respira-
tory biometrics, which is the most challenging application
based on respiration monitoring. The resulting technique
could be easily extended to support many emerging applica-
tions, such as customized services in smart homes and access
management in mobile healthcare systems.

We envision that the ultimate goal of user verification
is to free users from manually entering secret information
for identity verification and enable computing devices to

(a) Accessing computers
using breath

(b) Automatically verify users in smart home

Fig. 1. Example applications of continuous user verification that leverages
respiratory motions captured by off-the-shelf WiFi.

automatically identify the users around-the-clock. To enable
automatic user verification, existing approaches usually uti-
lize users’ unique behavioral patterns (e.g., gait pattern [28],
keystroke/mouse dynamics [31]) to continuously perform
identity verification. However, these systems can only iden-
tify users when they are involved in particular activities.
In addition, biometrics resulted from spontaneous physio-
logical processes (i.e., heart beating and breathing) have
been successfully used to continuously identify individuals.
For instance, recent advancement [19], [25] uses cardiac
patterns to enable unobtrusive continuous user verification.
Chauhan et al. [4] leverage the audio generated by three
distinct respiratory gestures (i.e., sniff, normal breath, and
deep breath) to perform user verification. However, this work
requires the user to perform the specific respiratory gestures
close to a microphone, which is inconvenient and impractical
in many real-world scenarios.

In our work, we reuse the WiFi infrastructures that are
prevalent in our daily lives and devise an innovative user
verification system that can automatically verify users’ iden-
tities based on their respiratory biometrics independent of any
specific activities. Different from the aforementioned existing
solutions, our solution can be easily integrated into any WiFi-
enabled mobile devices to provide contactless continuous ver-
ification independent of user behaviors in various applications
as depicted in Figure 1. For example, our system could let a
user log in his laptop as an assistance to their passwords
to enhance security (or even without entering passwords
in the future) and further access user-specific applications
continuously without additional identity verification as shown
in Figure 1(a). In another set of applications, the system could
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be applied to WiFi-enabled devices (e.g., Amazon Echo,
smart TV at home), which allow users to perform operations
(e.g., online purchase and parent control) without manually
input user-privilege information.

The goal of our system is to reconstruct reliable respiratory
patterns by directly examining CSI from WiFi signals despite
of interferences and noises coming from environments and
human bodies. Toward this end, we extract respiratory-
related patterns in CSI readings from WiFi-enabled devices
and apply an Empirical Mode Decomposition (EMD) based
filter [12] to mitigate the effects caused by the immanent
radio interference or other irrelevant body movements. Unlike
conventional filters (e.g., low-pass filter) that may mistakenly
remove useful signal components due to fixed cutoff fre-
quencies, the EMD-based filter can adaptively filter the noisy
components to better preserve the respiration-related signals.
To determine the sensitive subcarriers in CSI samples that are
significantly impacted by respiratory motions, a subcarrier
selection mechanism is developed based on the signal’s pe-
riodicity and sensitivity. The system further reconstructs the
respiratory motion signals leveraging the selected subcarriers
to reconstruct the reliable respiratory patterns.

To extract effective features, we examine the reconstructed
CSI signals and identifies the segments containing complete
respiratory cycles. It then extracts unique respiratory biomet-
rics in each respiratory segment by employing waveform
morphology analysis and fuzzy wavelet packet transform
(FWPT) [16]. The extracted morphological features (e.g.,
inhaling/exhaling rhythm, breathing depth, and duration) and
the FWPT based features constitute a unique complementary
set to discriminate each individual. These derived respiratory
features are used to construct each legitimate user’s profile
during the system enrollment. During the verification process,
the respiratory features derived at run-time are continuously
examined and compared to the user’s profile by the system
to either authenticate the legitimate user or reject a spoofing
adversary, who tries to fool the system by mimicking the
legitimate user’s breathing patterns. To further identify the
user’s identity under the scenarios when multiple users are
legitimate to access a service (e.g., the hot stove in a smart
home could be used by both parents but not for grandparents
and young kids), we build a two-layer deep neural network
(DNN) model to learn high-level abstractions of intrinsic
human respiration characteristics. The main contributions of
our work are summarized as follows:

• We develop the first user verification system that is
based on human natural breathing motions without
requiring user’s active participation of providing specific
respiratory gestures.

• Our system can be easily integrated into any WiFi-
enabled devices (e.g., laptops, smartphones, and smart
appliances) to perform contactless and continuous user
verification by integrating the morphologic-based fea-
tures and fuzzy-wavelet-packet-based features together
to model the unique respiratory biometrics.

• Our system detects the existence of a spoofing attack by
developing a spoofing detection mechanism and further
perform user identification by using the distinct biomet-
ric information rooted in respiratory motions based on
deep-learning techniques.

• Our system is evaluated through extensive experi-
ments involving 20 subjects with different setups of
WiFi devices and attack models. The results demon-
strate that our system can achieve over 95% verifi-
cation/authentication success rate and robustly detect
spoofing attacks with over 92% accuracy and less than
5% false positive rate.

II. RELATED WORK

Biometric-based User Verification. A couple of ap-
proaches have been developed to identify the user’s identity
based on their highly discriminative physiological-based bio-
metrics (e.g. fingerprint [2] and iris [17]), behavioral-based
biometrics (e.g., gait pattern [28], keystroke/mouse dynam-
ics [31] or vibration-based finger-input [20]). However, these
verification schemes not only require dedicated sensors but
also are vulnerable to replay/spoofing attacks (e.g., gummy
finger [9]).

Continuous User Verification. To avoid critical secu-
rity flaws in one-time verification methods, continuous user
verification is emerging in the security communities. For
instance, some approaches leverage physiological biomet-
rics, such as facial recognition [29] and heartbeat vital
signals [10], as well as behavioral biometrics (e.g., touch
dynamics [8] and gait patterns [28]). Although these studies
provide solutions for continuous user verification, they either
require dedicated devices or rely on users’ active participa-
tion, which are unscalable and obtrusive in reality.

Vital Signs based Verification. Existing studies have
shown that the uniqueness of heartbeat/respiration dynam-
ics among different people can be used for identifying
users. For instance, heartbeat-based verification has been
mainly studied by utilizing electrocardiogram (ECG) [13],
[26] and photoplethysmography (PPG) [14], [15]. Cardiac
Scan [19] performs cardiac dynamic-based verification using
the dedicated Doppler radar. These systems, however, either
require users to attach the dedicated devices on their body
or require the user to sit in front of the radar device, which
is not convenient in many application scenarios. Moreover,
BreathPrint [4] uses breathing sound for user verification.
However, it requires the user to hold the mobile devices very
close to the user’s nose, which is not applicable in many
practical scenarios.

Radio-based Sensing/Verification. Wireless radio signals
have been utilized to monitor and detect human activities in
a contactless and privacy-preserving way, such as daily ac-
tivities recognition [34], [35] and human dynamics [11], etc.
Some recent studies identify users according to the distinct
CSI changes associated with human’s daily activities [30] and
gait pattern [33]. However, these systems require the users
to be involved in particular activities. Recently, an increasing
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Fig. 2. Illustration of respiration mechanism. Inspiration and expiration
occur due to the expansion and contraction of the thoracic cavity, respec-
tively [5].

trend is shown in investigating the non-contact ways of
analyzing vital signs such as heartbeat and respiration for
well-being. The researchers have shown the success of using
either Received Signal Strength (RSS) [1] or CSI [21],
[23] from existing WiFi to track human’s vital signs (i.e.,
breathing and heart rates).

Differently, we take one step further to use the prevalent
off-the-shelf WiFi devices to extract the unique biometrics
rooted in respiratory motions for verification, which does not
require user’s active participation and enables continuous user
verification in a non-contact, unobtrusive manner.

III. FEASIBILITY STUDY

A. Unique Biometric Information in Respiration
In general, the process of human respiration comprises two

stages, inspiration and expiration [5], which are illustrated
in Figure 2. During inspiration, the size of the thoracic
cavity increases due to the contractions of the diaphragm and
intercostal muscles. While during expiration, the diaphragm
and intercostal muscles relax and the size of the thoracic
cavity decreases. Due to the human complex and diverse
physiological structure (e.g., the strength of the diaphragm
and intercostal muscles and volume of the thoracic cavity),
the respiratory motions associated with chest movements
and abdominal movements would present distinct magnitudes
and patterns from person to person. Existing studies have
confirmed that people’s respiratory motions have unique
biometric information. For instance, Parreira et al. [24] find
the significant differences in breathing patterns and tho-
racoabdominal motions among 109 participants. Moreover,
it has been shown that the uniqueness of an individual’s
respiratory motion would remain the same for a long time
despite the changes in ages, smoking habits, weight, and mild
respiratory diseases [27]. The diaphragm contractions caused
by breathing happen without conscious volition most of the
time [7]. Thus, the distinct respiratory motion, which is a
spontaneous thoracic movement, can be regarded as an ideal
biometric for continuous user verification.

B. Capturing Unique Respiratory Biometrics Using WiFi

A few existing studies (e.g., [21], [32]) have shown the
success of using CSI of existing WiFi signals to continuously
track the user’s breathing rate. Compared to the RSS-based
approaches, the fine-grained CSI provides both amplitude and
phase information of multiple OFDM subcarriers that respec-
tively experience distinct multipath and shadowing effects,
which can derive more accurate and respiratory patterns. In
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(a) User 1’s respiration
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(b) User 2’s respiration
Fig. 3. Distinct respiration patterns captured by CSI measurements.

this work, we take one step further and find that the highly
sensitive CSI can further capture the unique biometric infor-
mation carried by the respiratory motions. Figure 3 shows the
filtered CSI amplitude values at a subcarrier extracted from a
mobile device (i.e., laptop) when two people are respectively
sitting in front of the device and breathing normally. We
observe that the CSI patterns corresponding to two people
are significantly different in terms of the periodic patterns
and morphological characteristics, such as pulse width, small
fluctuations around the wave peak/trough in the figure, which
motivates us to use pervasive WiFi signals to capture such
unique respiratory motions for user verification.

System Challenges. 1) The system should be robust to
interferences and noises so that it can reconstruct reliable
respiratory patterns from WiFi signals in real-world wireless
environments; 2) The system needs to extract users’ unique
respiratory biometrics from the wireless signals affected by
the subtle respiratory motions to discriminate people; and
3) We need to develop an easy-to-deploy verification model
that can accurately detect spoofing attacks and identify users’
identities on mobile devices.

Applications. Respiratory motions, as a spontaneous ac-
tivity and critical metrics for evaluating a person’s health
conditions, could be used to facilitate many emerging ap-
plications such as liveness detection, sleep monitoring, and
early detection of diseases, etc. In this work, we take one
step further and show the feasibility of using respiratory bio-
metrics to contentiously authenticate and identify individuals,
which can be used in various domains, such as customized
services, surveillance system, and access management.

IV. ATTACK MODEL & SYSTEM OVERVIEW

A. Attack Model

Random Attack. An adversary does not have any knowl-
edge of the user’s respiratory pattern. When attacking the
system, the adversary stays in the same position as the user
does and breathes in a randomly chosen style regarding the
breathing rate, inhale/exhale rhythm, and depth.

Imitation Attack. An adversary has observed how the user
passes the system using breath multiple times. The adversary
stays in the same position as the user does and tries to mimic
the user’s breathing pattern to pass the system.

B. System Overview
The basic idea of our system is to examine the fine-

grained CSI of WiFi signals and extract the unique biometric
information rooted in users’ respiratory motions. The flow
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Fig. 4. Overview of system flow.

of our user verification system is illustrated in Figure 4.
The system first collects time-series CSI measurements of
30 OFDM subcarrier groups from normal WiFi traffic via
mobile devices (e.g., laptop). Once the system determines
that the wireless signals contain repetitive respiratory patterns
by finding the respiratory frequency components, it performs
the Respiratory Signal Calibration to obtain reliable CSI
measurements related to respiratory motions. The collected
data is then processed to remove ambient noises via the
Empirical Mode Decomposition (EMD) based Filter. The
proposed EMD-based filter can adaptively remove the noisy
components (e.g., immanent/environmental noises and irrel-
evant body interference) based on the data analysis and best
preserve the frequency components related to respiratory
motions. To obtain the most reliable respiratory signals,
we utilize a Periodicity and Sensitivity based Subcarrier
Selection strategy to select the subcarrier that is the most
sensitive to minute human body movements by comparing
the periodicity and variance of the CSI measurements.

The system then performs Respiration Segmentation and
Feature Extraction to segment respiration cycles and ex-
tract corresponding distinctive respiratory features. To ensure
that our system captures the unique biometric information
in a complete respiratory cycle, the system performs the
Respiration Segmentation to determine the segment of CSI
measurements containing a respiratory trough-crest pattern
by identifying the alternative increasing and decreasing trends
(i.e., a down-up-down pattern) resulted from the inhalation
and exhalation processes. Next, we use the Respiration Fea-
ture Extraction to derive unique respiration-related biometrics
from the CSI measurements in each respiration segment. We
particularly adopt two types of respiration features that can
comprehensively describe the unique biometric information
rooted in respiratory motions: Morphological Features and
Fuzzy Wavelet Packet Transform (FWPT) Features. The mor-
phological features focus on the shapes of the respiration-
related CSI patterns and capture the physiological character-
istics of respiratory motions (i.e., respiration depths and du-
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Fig. 5. Scalogram of a single subcarrier before and after EMD-based
filtering.

rations in different breathing stages). In addition, the FWPT
features analyze the respiration segment in the frequency do-
main using the wavelets in different scales, which generates
more fine-grained features that can reflect the complicated
frequency characteristics of respiratory motions.

The extracted respiration features are used to construct
profiles for legitimate users when they enroll in the system.
After enrollment, the system takes the respiration features of
the incoming respiration segments as the input to perform
the Respiration-based User Verification. Specifically, during
the verification phase, Breath ID determines as user access or
not by checking a threshold to compute the feature distance
between the incoming data and all users’ profiles. Further,
our system can recognize the legitimate user’s identity by
using the Deep Neural Network (DNN) classifier and defend
against various types of attacks (e.g., random attacks or
imitation attacks). We note that the user’s breathing motions
are usually stable in their daily lives. If the user’s breathing
pattern has a great change due to strenuous exercises or
fluctuating emotions, our system is designed to take the
user’s feedback and perform an adaptive profile update to
accommodate the changes.

V. RESPIRATORY SIGNAL CALIBRATION

A. EMD-based Noise Removal

The CSI measurements collected in real environments
usually contain interferences and noises introduced by com-
munication hardware (e.g., unstable transmission power and
frequencies) and environmental radio signals. Figure 5(a)
shows an example of the scalogram of the time-series CSI
measurements collected by a mobile device when a user
is sitting in a typical lab room. We can observe that the
scalogram exhibits high energy level in both respiratory
frequency band (i.e., around 0.2-0.4 Hz [3]) and other
frequency band (i.e., > 4Hz).

To mitigate the impact of such noises, we use Empirical
Mode Decomposition (EMD) based filter [12] to remove the
irrelevant signals (i.e., signals out of the respiratory frequency
band). Compared to the conventional de-noising methods
(e.g., low-pass or band-pass filtering), EMD-based filtering is
fully data-driven and can filter out the non-signal components
dynamically based on the signal itself instead of the fixed
cutoff frequency. Specifically, EMD first performs the decom-
position of the collected CSI measurements Hi(t) at the ith

subcarrier into a series of the intrinsic mode functions (i.e.,
IMFn(t), n = 1, 2, ...,M ) through the sifting process [12]
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Fig. 7. Illustration of different CSI patterns corresponding to the same
respiratory motions at two different subcarriers.

and a residual r(t): Hi(t) = r(t) +
∑M

n=1 IMFn(t). Each
decomposed IMF has the intrinsic time scale of the raw
signal, starting from high-frequency modes to low-frequency
modes. In order to keep the respiration related signals that are
in a relatively lower-frequency band, we only keep the last
(M -K+1) IMF s with lower-frequency components to obtain
the de-noised signals H̃i(t): H̃i(t) = r(t)+

∑M
n=K IMFn(t),

where K is between [1,M ]. To determine the optimal in-
dex K, we compute the mutual information [22] between
the respiratory components (i.e.,

∑M
n=K IMFn(t)) and noise

components (i.e.,
∑K−1

n=1 IMFn(t)) with all possible values
of K. The index K corresponding to the maximum mutual
information will be regarded as the optimal one. As illustrated
in Figure 5(b), the CSI signals in the high-frequency band
(i.e. > 4Hz) are clearly eliminated after applying our EMD
filtering with the optimal K.
B. Periodicity and Sensitivity based Subcarrier Selection

Because each subcarrier experiences unique multipath and
shadowing effects, we observe that the CSI of different
subcarriers have different sensitivities to subtle respiratory
motions. Our system needs to identify the subcarrier that
captures the most unique biometric information to ensure
the accurate user verification. Along with this direction, we
propose to find the subcarrier having the strongest period-
icity and sensitivity, and use it to extract the biometrics of
respiration. The insight is that the time series of CSI signif-
icantly affected by respiration should present a continuous
sinusoidal-like pattern with a high level of periodicity due
to the periodical nature of human respiration. Moreover, the
more sensitive the subcarrier is to respiratory motions, the
more comprehensive characteristics of respiratory motions
can be captured by CSI. Specifically, we quantify the ith

subcarrier’s periodicity (i.e., ρi) using Fisher’s Kappa [6],
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Fig. 8. Illustration of respiration segmentation.

which is defined as: ρi = max(PSD(H̃i(t))

PSD(H̃i(t))
, where PSD

denotes the power spectral density of the signal. Higher ρ
indicates stronger periodicity of the corresponding signals.
In addition, we utilize the variance of CSI amplitude to
quantify the ith subcarrier’s sensitivity (i.e., γi) to minute

movements: γi =
∑

(H̃i(t)−H̃i(t))
2

N , where N denotes the
length of the signal H̃i(t). Higher variance means more
significant amplitude changes in CSI and stronger impact
of respiratory motions to the subcarrier. Finally, we add the
normalized Fisher’s Kappa and variance with same weight
(i.e., 0.5) crossing all the subcarriers to select the most
sensitive subcarrier for respiration analysis. As an illustration,
Figure 6(a) depicts the extracted respiration signals from
three subcarriers (i.e. #4, #6, #14). We can observe that the
signal of subcarrier #4 has the greater periodicity and higher
amplitude of fluctuation than other two subcarriers, which
corresponds to the top score shown in Figure 6(b).

VI. RESPIRATION SEGMENTATION & FEATURE
EXTRACTION

A. Respiration Segmentation
Due to the multipath and shadowing effects, different

subcarriers have different CSI amplitudes even when they
are caused by the same respiratory motion. As shown in
Figure 7, the derived respiration signals at subcarrier #1
exhibit an up-down trend during a complete respiration
cycle (i.e., inhalation and exhalation), whereas the signals
at subcarrier #15 exhibit an opposite trend. This observation
indicates that the cause of the crests (i.e., up-down trend) or
troughs (i.e., down-up trend) is not deterministic and could
be either inhalation or exhalation. Therefore, we define the
conjoint trough and crest (i.e., each down-up-down trend) as
a respiration segment, which at least includes one inhaling-
exhaling stage or one exhaling-inhaling stage.

Intuitively, the respiration segments can be determined
by finding the local maximums/minimums in the respira-
tion signals. However, multiple local maximums/minimums
would be found on one crest or trough as illustrated in
Figure 8(a) due to the signal fluctuation. To find the
unique maximum/minimum points indicating the starting
and ending times of inhalation or exhalation, we develop
a Starting/Ending Points Selection approach , which ap-
plies two thresholds (i.e., Tmax and Tmin) to restrict the
minimum distances between two neighboring maximums or
minimums, respectively. The thresholds are determined by
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Fig. 9. Illustration of extracting morphological features from a respiration
segment.

the average distance between every two neighboring local
maximums/minimums. Additionally, to make each segment
consistent, the leftmost local maximum on a crest and the
rightmost local minimum on a trough are selected as starting
and ending point respectively. Based on the detected starting
and ending point, the respiration segment (i.e., each down-
up-down trend) can be obtained accordingly. For instance, the
waveform between the starting point τ1 and the second end-
ing point after τ1 (i.e., ε3) is used to determine a respiration
segment as illustrated in Figure 8(b).

B. Morphological Features
In order to obtain unique respiratory characteristics, we

first perform morphology analysis in each respiration seg-
ment to extract representative features. We conduct multi-
dimensional extraction of the morphological characteristics,
resulting in total 100 features that characterize representative
patterns in each respiration segment. Specifically, the down-
up-down trend of each respiration segment consists of one
wave trough and one wave crest, as shown in Figure 8(b). For
the wave trough as illustrated in Figure 9(a), Ht represents
the height of the wave trough defined as the difference be-
tween the maximum amplitude and the minimum amplitude.
htp denotes the p% of the height Ht from the minimum point
and Itp is the intercept of the waveform at the height htp.
Therefore, the morphological feature at p% of the trough
height is expressed as: etp =

It
p

ht
p
, which is able to reflect

the relationship between the respiration depth and respiration
time duration when a respiratory motion is finished p%. Sim-
ilarly, for the wave crest in the respiration segment as shown
in Figure 9(b), the morphological feature at p% of the crest
height is defined as: ecp =

Ic
p

hc
p
. We take p = {2, 4, ..., 100}

to compute 50 morphological features for a wave trough and
crest, respectively. The total 100 morphological features then
can be obtained for each respiration segment.

C. Fuzzy Wavelet Packet Based Features
In addition to the morphological features, our system

performs fuzzy wavelet packet transform (FWPT) [16] on
each respiration segment to construct the features that highly
correlate with respiratory motions. The wavelet packet trans-
form can realize fine-grained multi-resolution (i.e., time-
frequency) analysis to differentiate the minuscule differ-
ences of respiratory motions from person to person. This
trait can be utilized for analyzing the respiration-induced

Level 0

Level 1

Level 2

Level 3

Fig. 10. Illustration of a 3-level fuzzy wavelet packet transformation.

movements and vibrations of different parts of the body
(e.g., thoracic movements, abdominal movements, and chest
vibration caused by heartbeat) in varied frequency domains
for better capturing the distinct respiration biometrics. Also,
the wavelet analysis can locate the time periods for different
stages of respiratory motion.

Specifically, FWPT is based on the wavelet packet de-
composition, which is an expansion of the discrete wavelet
transform (DWT) whereby both the approximation and detail
subspaces are decomposed. In particular, Figure 10 shows
an example of 3-level wavelet packet decomposition, where
Γ0,0 denotes the original signal space and Γj,k denotes the
decomposed subspace with j denoting the decomposition
level and k denoting the subspace index at the jth level. The
signal space Γj,k at the upper level is decomposed into two
orthogonal subspaces, approximation subspace Γj+1,2k and
detail subspace Γj+1,2k+1. The efficacy of wavelet packet
transform relies on choosing the proper wavelet basis, which
determines whether the decomposed subspaces are highly
distinguishable among individuals. To select the best wavelet
basis in FWPT, fuzzy-entropy-based mutual information (MI)
method [16] is applied. We finally perform 7 levels fuzzy
wavelet packet decomposition which obtains

∑7
j=0 2j (i.e.,

255) wavelet subspaces. We then empirically choose the
standard deviation and skewness of each subspace signal as
the representative features for each subspace to generate total
510 FWPT based features for each respiration segment.

VII. RESPIRATION-BASED USER VERIFICATION

A. User Verification Approach
We first examine the feature distance between the incoming

respiration segment and the legitimate user’s profile to iden-
tify the user and detect spoofing attacks. Intuitively, if the
incoming respiration segment is from the user, the feature
distance should be small to the legitimate user’s profile,
otherwise, the feature distance should be large. In particular,
we calculate the Euclidean distance in the feature space using

the following equation: (λx, υn) =
√∑M

i=1(λxi − υni )2,

where λx = {λx1 , λx2 , ..., λxM} represents the feature vector
of the incoming respiration segment, M=610 is the feature
vector length. υn = {υn1 , υn2 , ..., υnM} denotes the feature set
of the nth legitimate respiration segment. We then select the
top k smallest distances to the legitimate user’s profile (i.e.,
respiration segments), and detect the presence of spoofer by
comparing the mean value of the k smallest distances to
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Fig. 11. Structure of the DNN model for legitimate user identification.

a pre-defined threshold η. In our case, we empirically set
k=10, and the optimal threshold η for spoofing detection
is decided by the ROC curve analysis, which is presented
in Section VIII-A4. Note that our method could be easily
extended to multiple users case, in which we select the top
k smallest distances to all the legitimate users’ profiles and
compare the mean value of these distances to η.

B. Deep Learning based Legitimate User Identification

When multiple users enroll in the system, we adopt
a neural-network-based classifier to differentiate the users.
Considering to learn complex non-linear biometric abstrac-
tions, we develop a deep neural network (DNN) model [18]
leveraging the extracted respiration features. The architecture
of our DNN model is shown in Figure 11, which is a
two-hidden-layer neural network with 60 neurons in each
layer. The weights of hidden neurons are chosen randomly
in the initial network. During training this neural network,
the weights would be tweaked using scaled conjugate gradi-
ent (SCG) backpropagation algorithm [18] according to the
training set.

Given an input of respiration feature vector to our trained
DNN model, each neuron in the first hidden layer multiplies
them by a weight factor and calculates the sum as the output:
o
(1)
i = b

(1)
i +

∑
j ej ·ω

(1)
j,i , where o(1)i denotes the output of the

ith neuron and ω
(1)
j,i represents the connecting weight from

the jth feature to the ith neuron in the first hidden layer.
b
(1)
i is a bias added to the ith neuron. The output of each

neuron is then passed to the second hidden layer as the input
through a non-linear sigmoid function: 1

1+exp(o
(1)
i )

. After that,
the model uses the same strategy as in first hidden layer to
obtain the output o(2)i in the second hidden layer. In the last
output layer, the posterior probability pu of uth legitimate
user is estimated based on o(2)i by using the softmax function

as follows: pu =
exp(b(o)u +

∑
i o

(2)
i ·ω(o)

i,u)∑
i exp(o

(2)
i )

, where ω(1)
i,u represents

the connecting weight from the ith neuron of the second
hidden layer to the uth user neuron in output layer. b(o)u

is a bias added to the uth user neuron. Finally, the system
identifies the legitimate user based on which class achieves
the maximum posterior probability.

Accessing 

Laptop

AP Laptop

(Setup i)

1

2

3
4

i

Fig. 12. Illustration of experimental setups.

C. Majority Voting Using Multiple Segments
To ensure the high verification accuracy, we devise a

majority voting process to combine the results of multiple
segments. In particular, for the user verification or legitimate
user identification results of multiple respiration segments, if
most of the segments are verified/identified as one subject
(e.g., spoofer or a specific legitimate user), then our system
would follow the majority voting decisions. This process can
help to greatly reduce the verification errors and improve the
robustness of our system.

VIII. PERFORMANCE EVALUATION

A. Experimental Methodology

1) Devices and Network: We conduct experiments in an
802.11n WiFi network. Specifically, we deploy two Dell
E6430 laptops to exchange WiFi packets periodically. Both
laptops run Ubuntu 14.04 LTS with the 4.2.0 kernel and are
equipped with an Intel WiFi Link 5300 card for measuring
CSI. The packet transmission rate is set to 200 pkts/s in
our experiments. We also studied the impact of packet
transmission rate on the system in Section VIII-C.

2) Setups of WiFi Devices: Our system is evaluated in
a university office with the size of 17ft × 9ft, as shown
in Figure 12, in which two laptops generate WiFi traffics
continuously. One of them is used as the Accessing Laptop
that the target user is operating. Another laptop (i.e., AP
Laptop), emulated as the access point, is used to exchange
WiFi traffic with the accessing laptop. The target user sits
on a chair in front of Accessing Laptop and breath regularly
during the experiment. The distance from the user to the
accessing laptop is about 0.2 meter, which is a common
distance that most people would use when operating the
device (e.g., laptop, smart appliances). AP Laptop is placed
at 4 different positions in the room to study the impact
of various device setups in practical scenarios. Specifically,
Setup 1 is the scenario where the two laptops are placed side
by side at 180 degrees on the desk. For Setup 2, 3, 4, the AP
laptop is placed 2 meters away from the participant’s front,
right side and back, respectively.

In order to explore the impact of different distances be-
tween the user and the accessing mobile device, we test the
distances 0.4 meters, 0.6 meters, 0.8 meters and 1 meter
under Setup 1. In addition, we also perform experiments
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Fig. 13. Performance of user verification with different numbers of
respiration segments for testing.
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Fig. 14. System performance under random attacks and imitation attackers
with different numbers of respiration segments for testing.

with the longer distance (i.e., d = 2.0m) between the AP
laptop and the accessing laptop using Setup 2, Setup 3,
Setup 4, respectively. The aforementioned impacts of various
distances will be discussed in Section VIII-C.

3) Data Collection: In the data collection, 20 subjects
(i.e., 14 males and 6 females) aging from 21 to 32 are
involved in the experiments. We collect around 200 − 300
respiration segments for each subject sitting in the chair for
each experimental setup. Each subject’s respiration data are
collected with multiple rounds in a long time span (i.e.,
four months), during which the participants perform normal
breathing without any instructions and restrictions. Through
our evaluation performance, we find that our system is robust
to the changes in the users’ emotion and physical conditions
crossing different days. To construct the legitimate user
profiles, 60 respiration segments of each legitimate subject
are pre-stored for training and the rest of segments are used
for testing. Moreover, we use the data collected in Setup 1
to evaluate our system under random attacks, in which 5
of the 20 subjects are considered as legitimate users and
the other 15 subjects act as attackers. When the system
is under imitation attacks with Setup 1, 1 subject acts as
the legitimate user and 10 other subjects try to imitate the
legitimate one’s breathing style (e.g., breathe with similar
breathing depth/duration and holding duration) to pass the
system after watching a pre-recorded video of the legitimate
user’s breathings multiple times. We further collect around
200−300 respiration segments for each attacker in this case.

4) Evaluation Metrics: (1) Authentication Success Rate.
The percentage of legitimate instances correctly verified
by our system; (2) False Positive Rate. The percentage of
legitimate instances that are mistakenly detected as attacker
instances; (3) Spoofing Detection Rate (True Positive Rate).
The percentage of attack instances that are correctly detected.
(4) Receiver Operating Characteristic (ROC). ROC curve
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Fig. 15. User verification performance with different training sizes and
packet transmission rate.
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Fig. 16. User verification performance with different distances.

shows the trade-off between the False Positive Rate and
Spoofer Detection Rate under different values of threshold.
The more the ROC curve hugs the point (0, 1), the better
the performance. The minimum distance between the point
(0, 1) of ROC space and any point on ROC curve gives
the optimal threshold. (5) Confusion Matrix. The degree of
color darkness in the matrix corresponds to the percentage
of correctly identified instances of DNN.

B. Performance of User Verification
Figure 13 illustrates the user authentication success rate

when different numbers of respiration segments are available
for testing. Specifically, Figure 13(a) depicts the authen-
tication success rate when the system only contains one
legitimate user under different setups. We observe that all
four setups achieve comparable authentication accuracy. The
average authentication success rate achieves around 90%
accuracy when five or more respiration segments are used
for testing. When the system has multiple registered users
for different setups, it can achieve similar authentication
accuracy as illustrated in Figure 13(b).

Moreover, we evaluate our system under random attacks
and imitation attacks. In the random attack experiment, we
consider 5 of the 20 subjects as legitimate users and the
other 15 subjects act as spoofers. Figure 14(a) depicts the
ROC curves with different numbers of segments for testing.
We can see that our spoofing detection rate reaches to over
92.14% with a false positive rate of around 5% when the
system integrates the testing results of 9 respiration segments.
While in the imitation attack, 1 participant acts as the legit-
imate user and 10 participants try to imitate the legitimate
user’s breathing style (e.g., breathe with similar breathing
depth/duration and holding duration). We demonstrate that
our system can also detect the imitation attacks with a high
accuracy and a low false positive rate, which are presented
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Fig. 17. Performance of deep learning-based legitimate user identification with 4 different setups.

in Figure 14(b). Specifically, we can achieve over 89.24%
detection rate with 5% false positive rate when the system
combines the testing results of 9 respiration segments. All the
above results validate the great robustness of the proposed
system under both random and imitation attacks.

Additionally, from the results above, we confirm the ef-
fectiveness of our majority voting algorithm using multiple
respiration segments for testing. As we can see from the
Figure 13, the average authentication success rate is greatly
increased from around 72% to over 93%, given the number
of respiration segments from 1 to 9. We have the same
observation on the system performance under various attacks
as shown in Figure 14. When there are more available
respiration segments for testing, the ROC curve hugs the
point (0,1) more, which indicates the system has better
performance on the spoofing attack detection.
C. Impact of Various Factors

We then use Setup 1 to evaluate the user verification
performance of our system with various factors while the
system has 5 registered users.

Impact of Training Size. As shown in Figure 15(a), the
average authentication success rate of 20 subjects shows the
growing trend with the increasing training size. In particular,
our system achieves an average authentication success rate of
71.78% with a small training size of 10. While increasing the
number of training samples to 30, the average authentication
success rate then grows dramatically to over 88%. If we set
the training samples to over 60, the system can achieve a
comparable authentication success rate of over 94%. There-
fore, the training size is decided to be 60 in our system,
which can achieve both good verification performance and
reasonable training time duration.

Impact of Packet Transmission Rate. Figure 15(b)
presents an average authentication success rates of 20
subjects under various packet rates from 100pkts/s to
1000pkts/s. We can observe that the system can maintain
high accuracy across different packet rates. Particularly, the
authentication success rate is up to 97.22% under the sam-
pling rate of 1000pkts/s. Moreover, our system can still
achieve the accuracy over 89% even for the low sampling
rates such as 100pkts/s. The above observations confirm that
the system can be applied to mobile devices with different
sampling capabilities.

Impact of Distance. We further study the performance
of user verification under various distances (i.e., 0.2m to
1.0m) between the target user and the accessing laptop.

As shown in Figure 16(a), even for the longer distances
(0.8m and 1.0m), we can still achieve a high authentication
success rate of 94.76% and 92.59%, respectively. In addition,
we also evaluate our system with 10 subjects under longer
distances (i.e., d=2.0m) between the accessing laptop and the
AP laptop using Setup 2, Setup 3 and Setup 4, respectively.
Figure 16(b) depicts the performance comparison of distances
1.0m and 2.0m under different setups. We observe that the
authentication success rates of three setups with a 2.0m
distance all kept great authentication performance of over
95%. It demonstrates that our system is applicable with
various practical device setup requirements.

D. Performance of Legitimate User Identification
We further examine the system’s legitimate user identifi-

cation performance. Figure 17 plots the color-scale maps of
the confusion matrices for the legitimate user identification
with 9 respiration segments with four different setups of
WiFi devices. We find that only few respiration segments are
mistakenly identified as belonging to incorrect users in all
setups. Setup 1 achieves the highest average identification
accuracy of 92.90% because the two devices are placed
close to each other, which guarantees the steady exchange
of WiFi packets. Other three setups, which places the AP
laptop apart from the accessing laptop, also have comparable
high accuracies. In particular, the average accuracies are
92.21%, 91.79%, 91.56% for Setup 2, Setup 3, and Setup 4,
respectively. This demonstrates that the system can accurately
identify legitimate users under various practical scenarios.

IX. CONCLUSION
In this paper, we propose a continuous user verification

system, which leverages the fine-grained respiratory biomet-
rics captured by commodity WiFi devices. By in-depth study,
we determine the unique representative CSI features that can
best model users’ respiratory motions by using the waveform
morphology analysis and fuzzy wavelet transformation. We
also develop a deep learning based user verification scheme
as well as a unique respiration distance based spoofer de-
tection approach to identify users and reject spoofers. We
conduct extensive experiments with 20 subjects and various
WiFi device setups regarding different practical applications.
The results demonstrate that the proposed system can verify
users with high accuracy and is resilient to spoofing attacks.
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